Institut de Chimie Moléculaire et des Matériaux d'Orsay

Recherche et Innovation en Electrochimie pour l'Energie

Pierre Millet

Professeur
Bât. 410ERIEE – ICMMO
Université Paris-Saclay
Rue du doyen Georges Poitou
91405 Orsay Cedex
FRANCE

+33 1 69 15 48 12
pierre.millet@u-psud.fr

Dernières publications

Electrocatalytic properties of {Mo3S4}-based complexes with regard to the hydrogen evolution reaction and application to PEM water electrolysis. J. Al Cheikh, R. Zakari, A. C. Bhosale, A. Villagra, N. Leclerc, S. Floquet, P. C. Ghosh, A. Ranjbari, E. Cadot, P. Millet, L. Assaud, Materials Advances, 2020, 1, 430-440

Engineering a cobalt clathrochelate/glassy carbon interface for the hydrogen evolution reaction. J. Al Cheikh, A. Villagra, A. Ranjbari, A. Pradon, M. Antuch, D. Dragoe, P. Millet, L. Assaud, Applied Catalysis B: Environmental, 2019, 250, 292-300

The role of surface states during photocurrent switching: Intensity Modulated Photocurrent Spectroscopy analysis of BiVO4 photoelectrodes. M. Antuch, P. Millet, I. Akihide, K. Akihiko, Appl. Catalysis B: Environmental, 2018

Immobilization of carbonaceous materials by functionalized iron(II) clathrochelates with terminal (poly)aromatic group(s) and their detailed cyclic voltammetry study. O.-A. Varzatsky, N.-V. Chornenka, A.-S. Belov, S.-A. Grigoriev, A.-S. Pushkarev, P. Millet, V.-N. Kalinichenko, Y.-Z. Voloshin, I.-G. Belaya, M.-G. Bugaenko, A.-G. Dedov, Electrochimica Acta, 2018, 269, 590-609

Influence of light intensity on the kinetics of light-driven hydrogen evolution using Rh-doped SrTiO3: a study by photoelectrochemical impedance spectroscopy. M. Antuch, A. Kudo, P. Millet, Bulgarian Chemical Communications, 2017, 49, 95-101

Characterization of Rh:SrTiO3 photoelectrodes surface-modified with a cobalt clathrochelate and their application to the hydrogen evolution reaction. M. Antuch, P. Millet, A. Iwase, A. Kudo, S.-A. Grigoriev, Y.-Z. Voloshin, Electrochimica Acta, 2017, 258, 255-265

Operando Current Mapping on PEM Water Electrolysis Cells. Influence of Mechanical stress. B. Verdin, F. Fouda-Onana, P. Millet, Int. J. Hydrogen Energy, 2017, 42(41), 25848-25859

Hydrogen production with a designed clathrochelate-based electrocatalytic materials: Synthesis, X-ray structure and redox-properties of the iron cage complexes with pendant (poly) aryl-terminated ribbed substituents. O. Varzatsky, D. Oranskiy, S. Vakarov, N. Chornenka, A. Belov, A. Vologzhanina, A. Pavlov, S.-A. Grigoriev, A. Pushkarev, P. Millet, V.-N. Kalinichenko, Y.-Z. Voloshin, A. Dedov, Int. J. Hydrogen Energy, 2017, 42, 27894-27909

Hydrogen production by proton exchange membrane water electrolysis using cobalt and iron hexachloroclathrochelates as efficient hydrogen-evolving electrocatalysts. S.-A. Grigoriev, A.-S. Pushkarev, I.-V. Pushkareva, P. Millet, A.-S. Belov, V.-V. Novikov, I.-G. Belaya, Y.-Z. Voloshin, Int. J. Hydrogen Energy, 2017, 42, 27845-27850

Effect of the ligand cage of cobalt clathrochelates on hydrogen evolution electrocatalysis: electrochemical, spectroscopic and DFT analyses. M. Antuch, A. Ranjbari, S.-A. Grigoriev, J. Al Cheikh, A. Villagrá, L. Assaud, Y.-A. Voloshin, P. Millet, Electrochimica Acta, 2017, 245, 1065-1074

Conventional and Innovative Electrocatalysts for PEM Water Electrolysis. P. Millet, ECS Transactions, 2016, 75(14), 28-35

Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction. R. Rivera-Tinoco, P. Millet, Int. J. Hydrogen Energy, 2016, 41, 4546-4559

Development and characterization of new nickel coatings for application in alkaline water electrolysis. V.-N. Kuleshov, N.-V. Kuleshov, S.-A. Grigoriev, E.-Y. Udris, P. Millet, A.-S. Grigoriev, Int. J. Hydrogen Energy, 2016, 41, 36-45

Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part II – Advanced anodic electrodes. C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catalysis B: Environmental, 2016, 182, 123 - 131

Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I – Pure IrO2-based anodes. P. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catalysis B: Environmental, 2016, 182, 153 - 160

Electrochemical Characterization of a High-Temperature Proton-Exchange Membrane Fuel Cell Using Doped-Poly Benzimidazole as Solid Polymer Electrolyte. S.-A. Grigoriev, N. V. Kuleshov, P. Millet, Journal of Fuel Cell Science and Technology, 2015, 12(3), 1045-1049

Study of nanostructured electrocatalysts synthesized by the platinum magnetron-ion beam sputtering onto metallized nanostructured carbonaceous support. S.-A. Grigoriev, A.-A. Fedotov, V.-Y. Murzin, E.-V. Khramov, Y.-V. Zubavichus, P. Millet, V.-N. Fateev, Russian Journal of Electrochemistry, 2015, 51(9), 807-819

Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells. C. Rozain, P. Millet, Electrochimica Acta, 2014, 131, 160-167

Derivation of the diffusion impedance of multi-layer cylinders. Application to the electrochemical permeation of hydrogen through Pd and PdAg hollow cylinders. R. Ngameni, P. Millet, Electrochimica Acta, 2014, 131, 52-59

Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning. S.-A. Grigoriev, K.-A. Dzhus, D.-G. Bessarabov, P. Millet, Int. J. Hydrogen Energy, 2014, 39, 20440-20446