Institut de Chimie Moléculaire et des Matériaux d'Orsay

Recherche et Innovation en Electrochimie pour l'Energie

  • Electrochemical atomic force microscopy (ECAFM) mode, with a spatial resolution less than 100 nm, will uniquely provide simultaneous capture of topographic, electrochemical, electrical, and mechanical maps with nanometerscale lateral resolution. It will allow the visualization, at the nanoscale, of electrical and chemical processes in liquid.  

 

  • Quantitative Nanoscale Mechanical (QNM) characterization will allow to map and distinguish nanomechanical properties, including modulus, adhesion, dissipation and deformation with up to atomic resolution.

 

  • Kelvin probe force microscopy (KPFM) mode will provide a high spatial resolution and accurate measurements of surface potential, allowing for a highresolution workfunction mapping.

 

Capture d’écran 2020-10-07 à 21.28.41.png

Contact: Loïc Assaud (loic.assaud@universite-paris-saclay.fr)

  • Surface Nanostructuring by anodization
  • Electrospinning
  • Functional materials by Atomic Layer Deposition

Capture d’écran 2020-10-07 à 21.45.05.png

Contact: Loïc Assaud (loic.assaud@universite-paris-saclay.fr)

Water dissociation by PEM electrolysis ...more

  • membrane-electrode assemblies
     
  • electrochemical engineering
     
  • modeling
     
  • technology developments and transfers
     
  • R&D technology platform

1.jpg

PEM water electrolysis cell

1a.png

         PEM water electrolysis stack

CO2 electrochemical reduction by PEM electrolysis...more

  • electrocatalysis
  • reduction product analysis
  • reaction selectivity
  •  PEM CO2 cells

2.jpg

PEM CO2 electrolysis cell

 

2b.png

              PEM CO2 electrolysis setup

Photo-electrochemical processes...more

 

  • Water photo-dissociation
     
  • CO2 photo-reduction
     
  • Dye sensitized solar cells

3.png

PEM photo-electrochemical cell

4b.jpg

Photo-electrochemical setup

Hydrogen storage/purification ...more

 

• Material science

• Electrochemical and gas-phase isotherm measurements

• Gas-phase impedance spectroscopies

• Dynamical characterization of permeation phenomena

8.jpg

         H2 sorption in metals

8b.jpg

gas-phase impedance setup

 

  •  Materials science (new active materials)
     
  •  Electronic/ionic limitations in electrodes
     
  •  Battery prototypes

 

 

Contact : Sylvain FRANGER

LFP.pngCarbon-coated LFP (patent)

 

pores.jpgLithium diffusion limitation in porous carbon-based electrodes

NaFP.pngSodium ferric fluorophosphate

 

NMC.pngDielectric relaxations in dry/wet NMC electrodes

 

  • Materials science (development of new solid electrolytes)
     
  • Solid/solid interfaces characterizations and optimizations
     
  • Electrochemical-Hydrothermal synthesis facilities for 3D thin films electrodeposition
     
  • New architectures, new designs
     

 

Contact : Sylvain FRANGER

NewElec.pngNew polymer electrolyte for µbatteries

 

PEIS.pngSolid/solid interfaces impedance investigation

3D-LCO.jpg3D conformal electrodeposition of LiCoO2

3d.jpg3D solid state battery using a self-standing textured LiCoO2 electrode

  • Battery testing in different environments
     
  • Battery modeling (behavior & lifespan)
     
  • Battery ageing

 

 

Contact : Sylvain FRANGER

model.pngElectrode porosity modeling

dS.jpgFull cell entropy variation measurements for ageing characterization

Development of innovative spectroscopies...more

• Fourier analysis and modeling

• Pulsed electrochemical impedance spectroscopy

• Gas-phase impedance spectroscopies

 

7.jpg

Gas-phase impedance diagrams

4.1.png

gas-phase impedance setup