Université de Paris-Sud

Laboratoire d'Etudes des Matériaux Hors Equilibre Université de Paris-Sud, Bât. 410, CNRS UMR 8647 F-91405 Orsay Cedex, France

Technische Universität Clausthal

Institut für Metallurgie TU Clausthal, Robert-Koch-Str. 42 D-38678 Clausthal-Zellerfeld, Germany

INPG-ENSEEG-UJF

Thermodyn. et Physico-Chimie des Matériaux

Domaine Universitaire, B.P. 75

C. CARRY

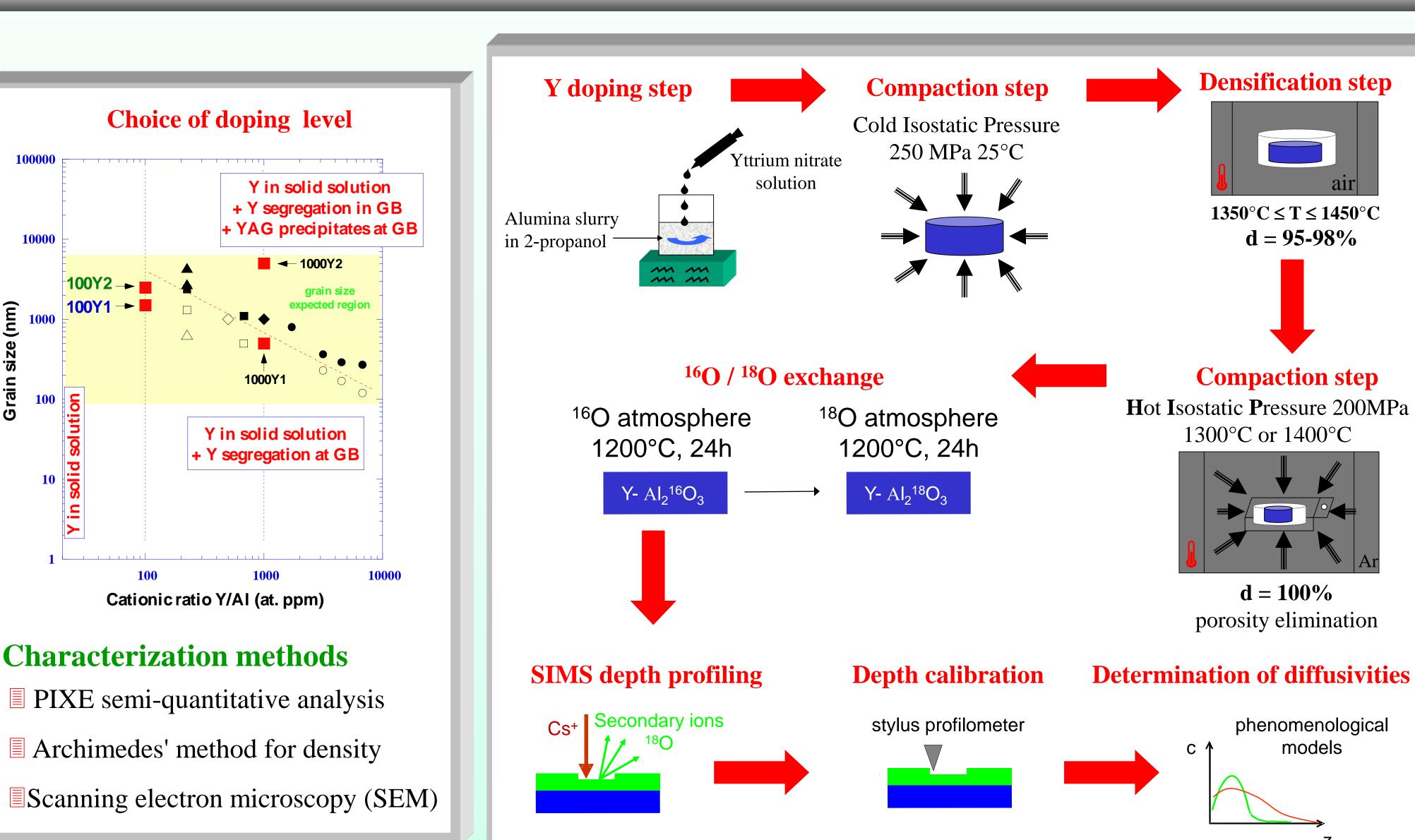
F-38402 Saint Martin d'Hères Cedex, France

C. LEGROS, B. LESAGE

M. KILO, G. STREHL, G. BORCHARDT

PURE AND FINE YTTRIA-DOPED α -ALUMINA SAMPLE ELABORATION AND DIFFUSION STUDIES

OBJECTIVES


Yttrium is a key-element to improve the properties of alumina in various fields (aeronautic, energy, automotive......). To ensure reproducible properties it is necessary to use materials with an homogeneous microstructure.

Yttrium usually has a very low solubility in the alumina lattice (\sim 10ppm). So it can exist in three forms: first, a lattice solid solution is formed; beyond saturation of the lattice, the grain boundaries (GB) are enriched in Y; finally, after saturation of both lattice solid solution and GB sites, a second phase precipitates inside the grain boundaries ($Y_3Al_5O_{12}$, YAG).

Earlier studies on ionic transport properties in Y-doped single crystals and poorly-defined polycrystalline α -alumina have indicated that yttrium may increase the oxygen mobility in the bulk but decreases it in the grain boundaries.

The present study concerns the ^{18}O transport properties of well-defined Y-doped α -alumina, which will provide important informations relevant to understand different processes (sintering, mechanical creep of α -alumina, growth kinetics of alumina scales on aluminium containing alloys at high temperatures).

EXPERIMENTAL

RESULTS

image on a polished surface

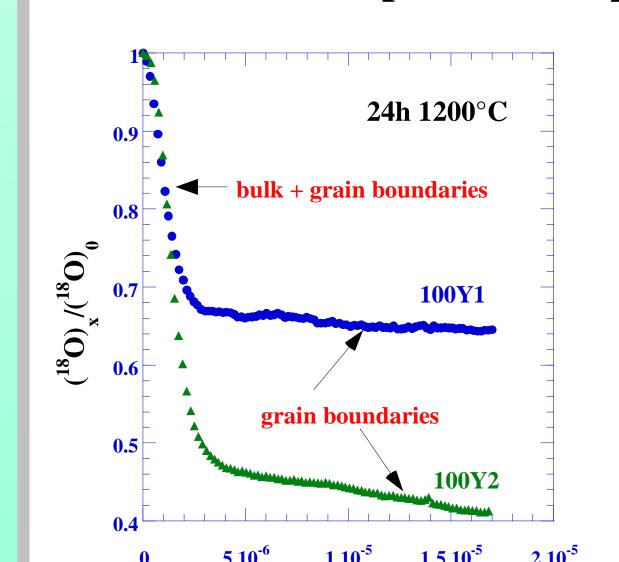
SAMPLES						
Sample	Pressing	Sintering	Y analysis (ppm)	Grain size (μm)	Density (% d _{th})	Microstructure
100Y1	CIP	1350°C + 1h	-	< 1	98	100Y1
	HIP	1300°C + 2h	82	1.5	100	2 <u>µm</u>
100Y2	CIP	1400°C + 2h	-	2	98	100Y2
	HIP	1400°C + 2h	76	2.5	100	$\frac{2\mu m}{2}$
1000Y1	CIP	1375°C + 1h	-	< 1	96	
	HIP	1300°C + 2h	910	0.5	100	$\frac{2\mu m}{2}$
						WON FOR
1000Y2	CIP	1450°C + 2h	-	3-4	96	
	HIP	1400°C + 2h	1000	5	100	<u>2μm</u>
		'		'		Backscattered electron

▼ Elaboration of full dense samples.

▼ Samples have approximately the amount of yttrium strived for. The scale factor between 100Y and 1000Y doping levels are conserved.

Microstructures and grain sizes correspond well to the expected data from grain size vs (Y/Al) graph. For 1000Y2, the backscattered electron image of a polished surface shows clearly precipitates of $Y_3Al_5O_{12}$ (YAG) probably at GB.

CONCLUSION


- \clubsuit α -alumina was doped with yttrium (100 and 1000 ppm cationic Y/Al) from a slurry of high purity α -alumina powder and an aqueous yttrium nitrate solution.
- ¹⁸O diffusion tests were performed on 100 ppm Y/Al full dense and homogeneous α-alumina polycrystals with two different grain sizes.
- Oxygen diffusion coefficients in the bulk are independent of the grain size because the solubility in bulk α-alumina doesn't change (~ 10 ppm). These results are in good agreement with observations of Le Gall & al. on Y doped α-alumina single crystals.

 (M. Le Gall, A.M. Huntz, B. Lesage, C. Monty, J. Bernardini, J. Mater. Sci. 30, 201 (1995))
- **Oxygen diffusion coefficients in GB depends on the Y concentration in GB:**
 - \Rightarrow for large grain sizes, the oxygen mobility is slow because the yttrium saturation level in GB is reached and induces $Y_3Al_5O_{12}$ (YAG) precipitation.
 - ⇒for small grains sizes, the oxygen diffusion is enhanced, because of the low density of Y in GB (below the saturation limit) increasing the number of free defects.

RESULTS

DIFFUSION STUDIES

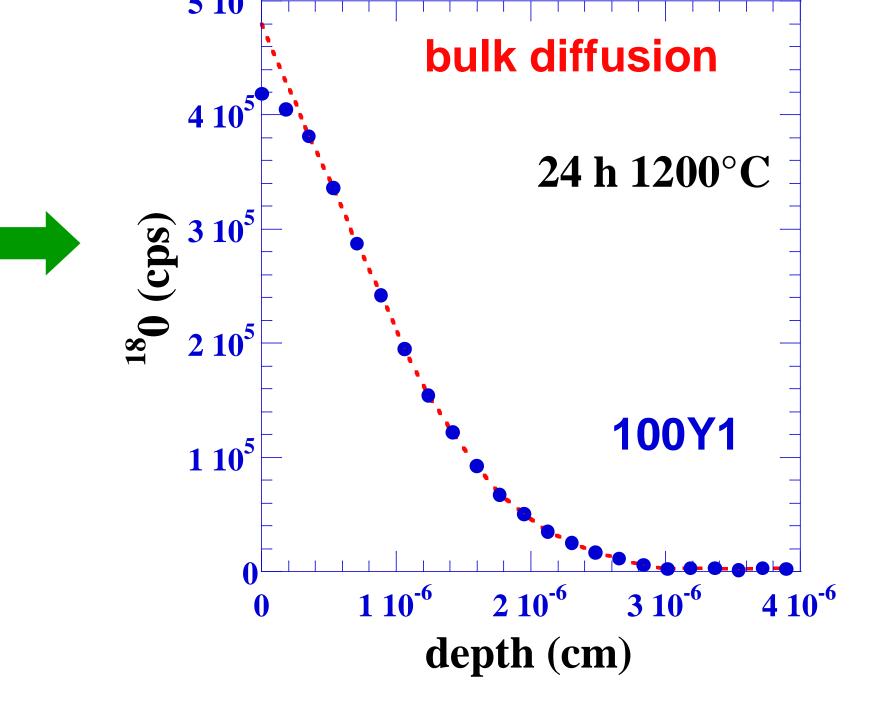
• Normalised ¹⁸O penetration profile

depth (cm)

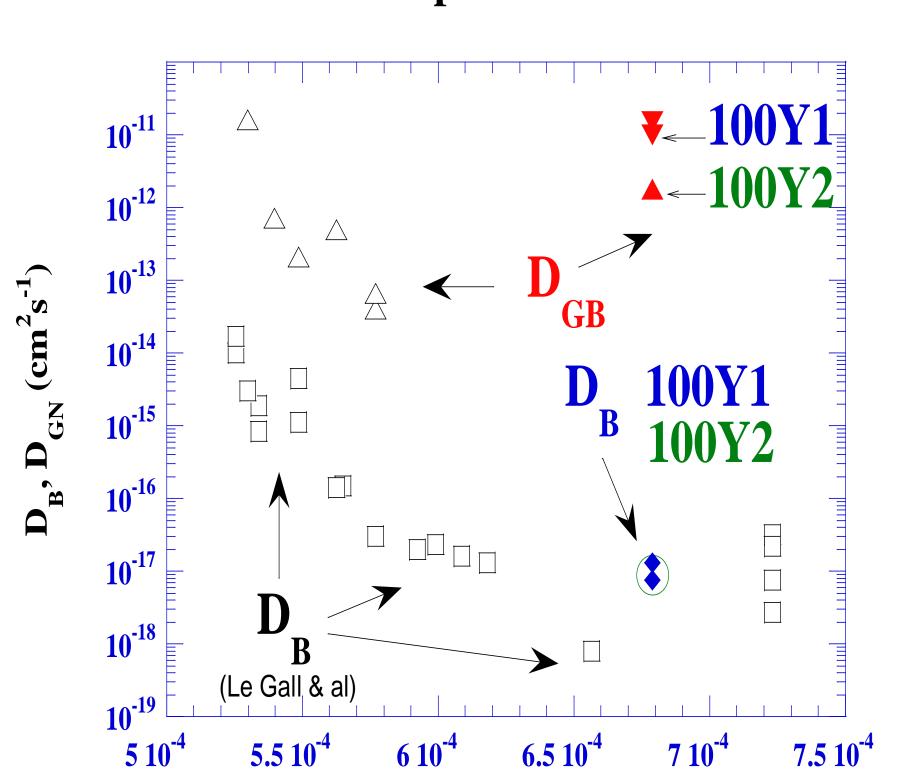
Two parts

① a strong decrease of ¹⁸O concentration interpreted as bulk diffusion

Bulk diffusion is quite the same in 100Y1 and 100Y2 because the bulk is in both cases saturated with yttrium


② a long range diffusion related to diffusion in grain boundaries

GB diffusion is faster in 100Y1 than in 100Y2 because the density of Y atoms segregated in grain boundaries is smaller in the finegrained 100Y1


♦ ¹⁸O penetration profile for bulk diffusion

Corrected profile obtained by substraction of the grain boundary diffusion

100Y1 \Rightarrow $D_B = 7.5 \ 10^{-18} \ cm^2 s^{-1}$ 100Y2 \Rightarrow $D_B = 8.8 \ 10^{-18} \ cm^2 s^{-1}$

• 18O diffusion in Y-doped α-alumina

 $1/T (K^{-1})$

D_{GB} was calculated using the Wipple-Le Claire equation

$$D_{GB} * \delta = 1.322 \sqrt{\frac{D_B}{t}} \left(\frac{-d \ln C}{dx^{6/5}} \right)^{-5/2}$$

100Y1 ⇒ $D_{GB} \approx 10^{-11} \text{ cm}^2 \text{s}^{-1}$ 100Y2 ⇒ $D_{GB} \approx 2.10^{-12} \text{ cm}^2 \text{s}^{-1}$

- V D_{GB} decreases with grain size due to a lower segregant atom density in smaller grains
- For bulk diffusion, results are in agreement with earlier results
- For GB diffusion, D_{GB} values are much greater than those deduced from the extrapolation of D_{GB} values at higher temperatures