High-nuclearity Metal-Cyanide Cluster [Mo6Cu14] with

Photomagnetic Properties

Nathalie Bridonneau ${ }^{\text {a }}$, Lise-Marie Chamoreau ${ }^{\text {a }}$, Goeffrey Gontard ${ }^{\text {a }}$, Jean-Louis Cantin, ${ }^{\text {b }}$ Jurgen von Bardeleben, ${ }^{\text {b }}$ and Valérie Marvaud ${ }^{\text {a* }}$.

Supplementary Information

[$\left.\mathrm{Mo}_{6}(\mathrm{Cu} \text {-tacn })_{14}\right]$, noted (1)
$\left[\mathrm{Mo}_{3}\left(\mathrm{Cu}-\mathrm{Me}_{3} \mathrm{tacn}\right)_{4}\right]$, noted (2)

1. Experimental section
2. XRD experiments
3. Magnetic properties
4. EPR spectroscopy
p 8-9
p 2-3
p 4-7
p 10

Figure S1-S2
Figure S3-S4-S5-S6
Table S1-S2-S3
Figure S7-S8-S9-S10-S11-S12
Figure S13

1. Experimental Section

a)

b)

Figure S1: Ligands used: a) Me 3 tacn (1,4,7-trimethyl-1,4,7-triazacyclo-nonane) and b) tacn (1,4,7-triazacyclononane).

TsCl, $\mathrm{N}(\mathrm{Et})_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	91%
Recrist. MeOH	

Figure S2: Synthesis of tacn (1,4,7-triazacyclononane) ligand
Tacn ligand was obtained from the condensation of the tosylated diethylenetriamine and ethylene glycol in presence of NaH . Removal of the tosyl groups was achieved under acidic conditions at $100^{\circ} \mathrm{C}$ for four days. Addition of NaOH enabled to get the cyclic triamine.

Ditosyl ethylene glycol. Tosyl chloride ($55 \mathrm{~g}, 0.29 \mathrm{~mol}, 2.24 \mathrm{eq}$) and triethylamine (29 g , $0.29 \mathrm{~mol}, 2.24 \mathrm{eq})$ were dissolved in 200 mL of dichloromethane over an ice bath and the solution was stirred for 10 min . Ethylene glycol ($8 \mathrm{~g}, 0.129 \mathrm{~mol}, 1 \mathrm{eq}$) was then added dropwise to the solution for 30 min and the reaction was stirred overnight. The reaction mixture was divided in four portions and poured into 300 mL of water before being extracted 3 times with 50 mL of dichloromethane. The organic layer was dried with MgSO_{4} and filtered. After evaporation of the solvent the orange powder was rinsed with methanol to produce 40.2 g of a white powder in an 85% yield.
$\mathrm{RMN}{ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}$ aromatic, $\mathrm{J}=9 \mathrm{~Hz}), 7.34(\mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}$ $\operatorname{aromatic}, \mathrm{J}=9 \mathrm{~Hz}), 4.18\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Tritosyl diethylenetriamine. Tosyl chloride (46 g, $0.24 \mathrm{~mol}, 3.1 \mathrm{eq}$) and triethylamine $(25.2 \mathrm{~g}, 0.25 \mathrm{~mol}, 3.2 \mathrm{eq})$ were dissolved in 200 mL of dichloromethane over an ice bath and the solution was stirred for 10 min . Diethylenetriamine ($8 \mathrm{~g}, 0.078 \mathrm{~mol}, 1 \mathrm{eq}$) was then added dropwise to the solution and the reaction was stirred overnight. Evaporation of the solvent
followed by recrystallization in methanol gave a white powder in a 91% yield. NMR ${ }^{1} \mathrm{H}$ (300 MHz , acetone-d6) : $\delta 7,72(\mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}$ aromatic, $\mathrm{J}=9 \mathrm{~Hz}$), 7,61 (d, 2H, CH aromatic, J= 9 Hz), $7,36\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\right.$ aromatic), $6,51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3,16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3,02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2,40 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}$).

1,4,7-Triazacyclononane Tritosylate. To a solution of tritosyl diethylenetriamine (24 g , $0.042 \mathrm{~mol}, 1 \mathrm{eq})$ in 150 mL of dried DMF at $100^{\circ} \mathrm{C}$ were added 6 g of $\mathrm{NaH}(60 \%$ in oil, 0.25 mol) in 500 mg portions (!careful, H_{2} production). Ditosyl ethylene glycol (15.7 g , $0.042 \mathrm{~mol}, 1 \mathrm{eq}$) in 150 mL of dried DMF were then added dropwise and the solution turned brown. The reaction mixture was heated for 3 more hours before being poured over 1 L of degassed water at $0^{\circ} \mathrm{C}$. The resulting mixture was vigorously stirred for 15 hours then filtered and washed with water then dried with ethanol and ether, producing 19 g of a light brown solid in a 75% yield. NMR ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}$ aromatic, $\mathrm{J}=9 \mathrm{~Hz})$, $7.33(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}$ aromatic, $\mathrm{J}=9 \mathrm{~Hz}), 3.41\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.

1,4,7-Triazacyclononane • Trihydrochlorate (TACN • 3 HCl). 1,4,7-Triazacyclononane tritosylate ($19 \mathrm{~g}, 0.032 \mathrm{~mol}$) in 40 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was heated at $100^{\circ} \mathrm{C}$ for 4 days under an argon atmosphere. Ethanol (300 mL) and ether (300 mL) were then added to the brown mixture at $0^{\circ} \mathrm{C}$ before filtering the solution. The brown residue was poured in 50 mL of concentrated HCl and 200 mL of ethanol. After 20 hours of stirring the solution was filtered and the solid was washed using ethanol and ether, giving 5.51 g of a light grey product in a 75% yield. NMR ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 3.42\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$.

1,4,7-Triazacyclononane (TACN). 1,4,7-Triazacyclononane $\cdot 3 \mathrm{HCl}(5.51 \mathrm{~g}, 0.023 \mathrm{~mol})$ was dissolved in 100 mL of toluene before adding 2.01 g of NaOH in 20 mL of water. The mixture was then heated to $100^{\circ} \mathrm{C}$ and the water extracted using a Dean-Stark apparatus. The solution was then filtered and the solvent carefully evaporated to give 1.31 g of a yellow volatile oil in a 51% yield. NMR ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 2.80\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$.

2. X-Ray Crystallography

Figure S3: Ortep representation of the X-ray crystal structure of $\mathbf{1}$ (thermal ellipsoids set at 50% probability level)

Figure S4: Formation of $\mathbf{1}$ viewed as the association of $4\left[\mathrm{Mo}_{3} \mathrm{Cu}_{4}\right]$ subunits

$\left[\mathrm{Mo}^{\mathrm{IV}}(\mathrm{CN})_{8}\right]$	$(\mathrm{APBC}-8) D_{4 d}$	$(\mathrm{DD}-8) D_{2 d}$
Mo	1.79748	0.36158

Table S1: Shape analysis of the coordination polyhedra of Molybdenum atoms for 1

Crystal data and structure refinement for [$\mathrm{Mo}_{6} \mathbf{C u}_{14}$-tacn] (1)

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C133.60 H338 Cl2 Cu14 Mo6 N90.80 O80.80
6046.22

200(2) K
0.71073 Å

Triclinic
P-1
$\mathrm{a}=19.1825(10) \AA \quad \alpha=76.569(3)^{\circ}$.
$b=19.3041(10) \AA \quad \beta=75.823(3)^{\circ}$.
$\mathrm{c}=19.3498(10) \AA \quad \gamma=75.935(3)^{\circ}$.
6624.1(6) \AA^{3}

1
$1.516 \mathrm{Mg} / \mathrm{m}^{3}$
$1.480 \mathrm{~mm}^{-1}$
3114
$0.12 \times 0.09 \times 0.08 \mathrm{~mm}^{3}$
1.405 to 27.720°.
$-25<=\mathrm{h}<=24,-21<=\mathrm{k}<=25,-24<=1<=25$
75398
30033 [$\mathrm{R}(\mathrm{int})=0.0536]$
98.7 \%

Semi-empirical from equivalents
0.746 and 0.615

Full-matrix least-squares on F^{2}
30033 / 90 / 1522
1.111
$\mathrm{R} 1=0.1048, \mathrm{wR} 2=0.2529$
$R 1=0.1388, w R 2=0.2688$
n/a
4.840 and $-1.653 \mathrm{e} . \AA^{-3}$

Single Crystal X-Ray Structure of [$\left.\mathrm{Mo}_{3} \mathrm{Cu}_{4}-\mathrm{Me}_{3} \tan \right]$ (2)

Figure S5: Ortep representation of the X-ray crystal structure of 2 (thermal ellipsoids set at the 30% probability level)

Interatomic distances (\AA)		Angles (${ }^{\circ}$)	
Mo1-C	2.1381(78)-2.1735(98)	Mo1-C-N (bridge)	176.366(652)-176.690(671)
Mo2-C	2.1463(133)-2.1766(102)	Mol-C-N (free)	177.452(754)-178.190(634)
$\mathrm{C}-\mathrm{N}$ (free)	1.1322(144)-1.1550(128)	Mo2-C-N (bridge)	176.663(700)-177.172(839)
C-N (bridge)	1.1362(97)-1.1565(133)	Mo2-C-N (free)	177.608(923)-177.750(788)
Cu1-N (CN bridge)	1.9600(69)-1.982(8)	$\mathrm{C}-\mathrm{N}-\mathrm{Cu} 1$	167.818(658)-168.528(728)
Cu2-N (CN bridge)	2.0381(95)-2.1180(62)	$\mathrm{C}-\mathrm{N}-\mathrm{Cu} 2$	173.117(593)-177.553(858)
Cu3-N (CN bridge)	1.9655(62)	$\mathrm{C}-\mathrm{N}-\mathrm{Cu} 3$	168.929(600)
$\mathrm{Cu} 1-\mathrm{N}$ (ligand)	2.0512(69)-2.1818(77)	$\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ (cycle $\mathrm{Mo3}^{\text {Cu3 }}$)	90.932(246)-91.105(306)
$\mathrm{Cu} 2-\mathrm{N}$ (ligand)	2.1205(101)-2.1911(80)	C-Mo-C (cycle $\mathrm{Mos}^{\text {Cus }}$)	105.942(288)-106.873(298)
Cu3-N (ligand)	$2.0587(97)-2.1670(134)$	$\begin{gathered} \text { C1-Mo1-C2, C3-Mo1-C2, } \\ \text { C10-Mo2-C9 } \end{gathered}$	$\begin{gathered} 73.384(187), 74.107(297), \\ 73.457(181) \end{gathered}$
Mo1---Cu1	5.2080(12)		
Mol---Cu2	$5.4080(9)$		
Mo1---Cu3	$5.2291(10)$		
Mo2---Cu1	$5.2366(12)$		
Mo2---Cu2	5.3531(14)		
Mo1---Mo2	8.5332(100)		
$\mathrm{Cu} 1--\mathrm{Cu} 2$	$6.7247(13)$		
Cu1---Cu3	8.9395(15)		
Cu2---Cu3	6.7770(16)		

Table S2: Selected interatomic distances and angles for 2

$\left[\mathrm{Mo}^{\mathrm{IV}}(\mathrm{CN})_{8}\right]$	$(\mathrm{APBC}-8) D_{4 d}$	$(\mathrm{DD}-8) D_{2 D}$
Mo 1	0.32057	1.84374
Mo 2	0.40650	2.09128

Table S3: Shape analysis of the coordination polyhedra of Molybdenum atoms for 2

Figure S6: X-ray crystal structure of $\mathbf{2}$ exhibiting the channel alignment along the b axis

Crystal data and structure refinement for $\left[\mathrm{Mo}_{3} \mathrm{Cu}_{4}-\mathrm{Me}_{3} \operatorname{tacn}\right]$ (2)

Empirical formula	C120 H168 Cu9 Mo6 N80 O70
Formula weight	4998.83
Temperature	200(1) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pnnm
Unit cell dimensions	$a=33.5532(15) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=16.9349(7) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=27.2581(11) \AA \quad \gamma=90^{\circ}$.
Volume	15488.6(11) \AA^{3}
Z	2
Density (calculated)	$1.072 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.903 \mathrm{~mm}^{-1}$
F(000)	5042
Crystal size	$0.3 \times 0.15 \times 0.1 \mathrm{~mm}^{3}$
Theta range for data collection	0.962 to 28.700°.
Index ranges	$-45<=\mathrm{h}<=45,-22<=\mathrm{k}<=22,-36<=\mathrm{l}<=36$
Reflections collected	111283
Independent reflections	$20401[\mathrm{R}($ int $)=0.0518]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7458 and 0.6722
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	20401 / 0 / 710
Goodness-of-fit on F^{2}	1.180
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1128, \mathrm{wR} 2=0.3031$
R indices (all data)	$\mathrm{R} 1=0.1425, \mathrm{wR} 2=0.3242$
Largest diff. peak and hole	2.047 and -1.957 e. \AA^{-3}

3. Magnetic Properties for $\left[\mathrm{Mo}_{6} \mathrm{Cu}_{14}\right.$-tacn] (1)

Figure S7: a) Variation of $\chi_{m} T$ vs. $T(H=1000 G)$ for 1;
b) M vs. H at $2 K$, Brillouin simulation

Figure S8: Magnetization recorded as a function of irradiation time for 1

Figure S9: Field sweep of $\mathbf{1}$ before (black), after (red) irradiation, and after relaxation (green)

4. Magnetic properties for $\left[\mathrm{Mo}_{3} \mathrm{Cu}_{4}-\mathrm{Me}_{3} \operatorname{tacn}\right]$ (2)

Investigation of the photomagnetic properties of complex 2 shows at room temperature a $\chi_{m} T$ value of $2.83 \mathrm{~cm}^{3} . \mathrm{mol}^{-1} . \mathrm{K}$ spectroscopies (see SI-Figure S12), in agreement with the theoretical values of 2.36 corresponding to at least six independent copper atoms ($\mathrm{Cu}^{\prime \prime}, \mathrm{d}^{9}, \mathrm{~S}=1 / 2, g=2.05$), including the suspected copper atoms included in holes of the MOF structure, as confirmed by elemental analysis and EPR. Field sweep plot of 2 (ESI-Figure S6) shows a maximum value of $6.15 \mu \mathrm{~B}$ at 90 kOe in agreement with the presence of six Cu " atoms ($g_{\mathrm{Cu}}=2.05$).

Figure S10: a) Variation of $\chi_{m} T$ vs. $T(H=1000 G)$ for 2; b) M vs. H at $2.2 K$ for 2, Brillouin simulation

Figure S11: Magnetization recorded as a function of irradiation time for 2. The decrease of magnetization observed when the laser beam is switched on is attributed to a small increase of temperature of the sample.

Figure S12: a) Field sweep before (black) and after (red) irradiation for 2
b) Variation of $\chi_{m} T v s . T$ before and after irradiation

5. EPR spectroscopy studies

Upon irradiation the signal immediately decreased, reflecting the coupling of the Cul' ions. Complex $\mathbf{2}$ exhibited an almost complete quenching of the $\mathrm{Cu}^{\text {ll }}$ signal less important thant what is observed for 1 . This difference of behavior can be expected from the presence of the residual non-photoactive $\mathrm{Cu}^{\prime \prime}$ ions located in the channels formed in crystals of $\mathbf{2}$.

Figure S3: EPR spectra for $\mathbf{2}$ before (black) and under (red) irradiation, and after relaxation (green)

