Electronic Supplementary Information (ESI)

# N-Heterocyclic Carbene-Stabilized Gold Nanoparticles with Tunable Sizes

N. Bridonneau,<sup>a</sup> L. Hippolyte,<sup>a,b</sup> D. Mercier,<sup>c</sup> D. Portehault,<sup>a</sup> M. Desage-El Murr,<sup>b</sup> P. Marcus,<sup>c</sup> L. Fensterbank,<sup>b</sup>\* C. Chanéac,<sup>a</sup> François Ribot<sup>a</sup>\*

- a. Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
   E-mail: francois.ribot@sorbonne-universite.fr
- b. Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France. E-mail: louis.fensterbank@sorbonne-universite.fr
- c. PSL Research University, Chimie Paris Tech, CNRS, Institut de Recherche de Chimie Paris, IRCP, F-75005 Paris, France.

#### Index

| 1. X-ray crystal structures determination | Page 2 |
|-------------------------------------------|--------|
| 2. NaH free vs. NaH containing protocol   | Page 4 |
| 3. Infrared spectroscopy                  | Page 5 |
| 4. Mass spectrometry                      | Page 6 |
| 5. X-ray photoelectron spectroscopy       | Page 6 |
| 6. NPs synthesized from AuCl              | Page 7 |
| 7. NMR spectra                            | Page 8 |

|                                                                                | 1-AuX <sub>4</sub>                 | 2-AuX <sub>4</sub>                           |
|--------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|
| Formula                                                                        | $C_{27}H_{53}N_2 \cdot AuBrCl_3$   | $C_{31}H_{55}N_2 \cdot AuBr_{0.93}Cl_{3.07}$ |
| M / (g/mol)                                                                    | 789.53                             | 835.23                                       |
| cryst system, space group                                                      | Monoclinic, $P2_1/c$               | Monoclinic, $P2_1/n$                         |
| a, b, c / Å                                                                    | 8.4845 (4), 42.119 (2), 9.4482 (5) | 9.1187 (2), 10.1455 (3), 39.2531 (10)        |
| β / °                                                                          | 102.912 (2)                        | 90.211 (1)                                   |
| $V / Å^3$                                                                      | 3291.0 (3)                         | 3631.43 (16)                                 |
| Z                                                                              | 4                                  | 4                                            |
| Radiation type                                                                 | Μο Κα                              | Μο Κα                                        |
| μ (mm <sup>-1</sup> )                                                          | 5.95                               | 5.33                                         |
| Crystal size (mm)                                                              | $0.25 \times 0.22 \times 0.08$     | $0.32\times0.26\times0.17$                   |
| $T_{\min}, T_{\max}$                                                           | 0.495, 0.746                       | 0.426, 0.739                                 |
| No. of measured, independent<br>and observed $[I > 2\sigma(I)]$<br>reflections | 27789, 5785, 5469                  | 104767, 10687, 8429                          |
| R <sub>int</sub>                                                               | 0.023                              | 0.049                                        |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                              | 0.595                              | 0.706                                        |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                            | 0.026, 0.057, 1.30                 | 0.068, 0.125, 1.44                           |
| No. of reflections                                                             | 5785                               | 10687                                        |
| No. of parameters                                                              | 309                                | 349                                          |
| $\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$                      | 1.53, -2.43                        | 1.42, -2.20                                  |

### 1. X-ray crystal structures determination

Table S1. Crystal data and structure refinement for  $1-AuX_4$  and  $2-AuX_4$ 



Figure S1. Molecular structure of 1-AuX<sub>4</sub> (color code: Au = yellow, Cl/Br = green, N = blue, C = grey, H = light grey).



**Figure S2.** Crystal packing of **2-AuX**<sub>4</sub> (color code: Au = yellow, Cl/Br = green, N = blue, C = grey, H = light grey).



Figure S3. Molecular structure of 2-AuX<sub>4</sub> (color code: Au = yellow, Cl/Br = green, N = blue, C = grey, H = light grey).

#### 2. NaH free vs. NaH containing protocol



Figure S4. TEM images, corresponding size distributions and UV-visible absorption spectra of gold nanoparticles prepared with NaH and NaBH<sub>4</sub>: a) 1-AuX<sub>4</sub> only; b) 1-AuX<sub>4</sub> + 4 1-Br



Figure S5. TEM images, corresponding size distributions and UV-visible absorption spectra of gold nanoparticles prepared from 2-AuX<sub>4</sub>:
a) NaBH<sub>4</sub> only; b) NaBH<sub>4</sub> only and 2-Br addition;
c) NaH + NaBH<sub>4</sub>; d) NaH + NaBH<sub>4</sub> and 2-Br addition



Figure S6. TEM images, corresponding size distributions and UV-visible absorption spectra of gold nanoparticles prepared from 3-AuX<sub>4</sub>:
a) NaBH<sub>4</sub> only and 3-Br addition;
b) NaH + NaBH<sub>4</sub>; c) NaH + NaBH<sub>4</sub> and 3-Br addition

#### 3. Infrared spectroscopy



Figure S7. IR spectra of 1-Br (blue curve), 1-AuX<sub>4</sub> (red curve) and 1-AuNPs (black curve)

#### 4. Mass spectrometry



Figure S8. Mass spectrum of 1-AuNPs:  $m/z = 405.42 = 1^+$ ;  $m/z = 1005.79 = [Au(NHC1)_2]^+$ .

#### 5. X-ray photoelectron spectroscopy





Figure S10. Au4f photoelectron peak for 1-AuNPs (top trace) and a planar gold substrate (bottom trace)



### 6. NPs synthesized from AuCl

**Figure S11.** TEM images and corresponding size distributions of gold nanoparticles: a) AuCl + **3**-Br, NaBH<sub>4</sub> only ( $\lambda_{max} = 532 \text{ nm}$ ); b) AuCl + **1**-Br, NaH + NaBH<sub>4</sub> ( $\lambda_{max} = 535 \text{ nm}$ )

## 7. NMR spectra

## a) 1-Br <sup>1</sup>H













### e) **3-Br** <sup>1</sup>H



# f) 3-Br <sup>13</sup>C







# i) 2-AuX<sub>4</sub> <sup>1</sup>H











## k) **3-AuX**<sub>4</sub> <sup>1</sup>H



# l) 3-AuX<sub>4</sub> <sup>13</sup>C

