Institut de Chimie Moléculaire et des Matériaux d'Orsay

Nita Dragoe

Build. 410, office 353 – SP2M – ICMMO
Université Paris-Saclay
Rue du doyen Georges Poitou
91405 Orsay Cedex

+33 1 69 15 44 48

Nita DRAGOE is a Professor at Université Paris-Sud and one of the two leaders of the group Synthèse, Propriétés et Modélisation des Matériaux. His activities are related mainly with synthesis and characterisation of advanced functional materials.

Professeur, 2004, Université Paris Sud
Habilitation, 2003
2001, Associate Professor,  Université Paris Sud, 
2000, Lecturer (‘Kochi’), University of Tokyo, Japan
1997- 2000: Postdoctoral Researcher University of Tokyo, Japan Science and Technology CREST Fellow, (with Prof Koichi Kitazawa).
1998, Assistant Professor, University of Bucharest, Department of Physical Chemistry
1996, PhD Université Paris Sud XI and University of Bucharest (with Alexandre Revcolevschi et Eugen Segal).
1991 Assistant, University of Bucharest
1991, MSc in Inorganic Chemistry, University of Bucharest (with Marius Andruh)

Others : 
Visiting Professor, University of Tokyo, 2019, 2015
Visiting Scientist, Institut RIKEN, Wako, Japan, 2010
Visiting Professor, Beihang University, Beijing, 2017-2022

Recent publications

Entropy driven synthesis of new materials. N. Dragoe, Materials Lab, 2022, 1, 220001

New entropy-stabilized oxide with pyrochlore structure: Dy2(Ti0.2Zr0.2Hf0.2Ge0.2Sn0.2)2O7. F. Vayer, C. Decorse, D. Berardan, N. Dragoe, Journal of Alloys ans Compounds, 2021, 883, 160773

In- and out-plane transport properties of chemical vapor deposited TiO2 anatase films. A. Miquelot, L. Youssef, C. Villeneuve-Faure, N. Prud'Homme, N. Dragoe, A. Nada, V. Rouessac, S. Roualdes, J. Bassil, M. Zakhour, M. Nakhl, C. Vahlas, JOURNAL OF MATERIALS SCIENCE, 2021, 56, 10458–10476

Effect of water incorporation on the ionic conduction properties of the solid electrolyte material Rb2Ti2O5.(H2O)x. S. De Sousa Coutinho, D. Bérardan, G. Lang, R. Federicci, P. Giura, K. Beneut, N. Dragoe, S. Holé, B. Leridon, Solid State Ionics, 2021, 364, 115630

Morphological, structural, optical, and electrical study of nanostructured thin films: Charge transport mechanism of p-type Co3O4. A. Miquelot, M. Despotopoulou, C. Vahlas, C. Villeneuve, N. Dragoe, N. Prud'Homme, O. Debieu, Materials Chemistry and Physics, 2020, 240, 122059

Order emerging from disorder. N. Dragoe, D. Bérardan, Science, 2019, 336, 573-574

Lattice Dynamics Study of Thermoelectric Oxychalcogenide BiCuChO (Ch = Se, S). R. Viennois, P. Hermet, M. Beaudhuin, J.-L. Bantignies, D. Maurin, S. Pailhès, M. Fernandez-Diaz, M. Koza, C. Barreteau, N. Dragoe, D. Bérardan, The Journal of Physical Chemistry C, 2019, 123, 16046

Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity. N. Osenciat, D. Berardan, D. Dragoe, B. Léridon, S. Holé, A. K. Meena, S. Franger, N. Dragoe, Journal of the American Ceramic Society, 2019, 102 (10), 6156-6162

Long-range magnetic ordering in rocksalt-type high-entropy oxides. J.-S. Polo, T. Takayama, D. Bérardan, A. Hoser, M. Reehuis, H. Takagi, N. Dragoe, Applied Physics Letters, 2019, 114, 122401

Influence of structural isomerism of amino acid on the crystal growth of ZnO nanoparticles synthetized by polyol methods. C. Byl, A. Gloter, J.-P. Baltaze, D. Berardan, N. Dragoe, Journal of Sol-Gel Science and Technology, 2017, 83, 296

A versatile system for Hall effect measurements at high temperature. M. Gunes, H. Sato, L. Pinsard-Gaudart, D. Berardan, N. Dragoe, Measurement Science and Technology, 2017, 28, 105905

Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. D. Berardan, A.-K. Meena, S. Franger, C. Herrero, N. Dragoe, Journal of Alloys and Compounds, 2017, 704, 693-700

Room temperature lithium superionic conductivity in high entropy oxides. D. Berardan, S. Franger, A. K. Meena, N. Dragoe, Journal of Materials Chemistry A, 2016, 6, 9536

Colossal dielectric constant in high entropy oxides. D. Berardan, S. Franger, D. Dragoe, A.-K. Meena, N. Dragoe, Physica Status Solidi (Rapid Research Letters), 2016, 10(4), 328-333

Nanoscale microstructural and chemical analysis of SiO2-Zn1-xAlxO nanocomposites: towards a better understanding of Si and Al substitution in ZnO. M. Gilbert, C. Byl, D. Berardan, A. Gloter, N. Dragoe, F. Vurpillot, Journal of the American Ceramic Society, 2015, 98, 3948

Preparation and study of the thermoelectric properties of nanocrystalline Sn1-xTaxO2 (0. T.-T.-X. Vo, N.-G.-H. Le, Q.-N. Pham, C. Byl, D. Dragoe, M.-G. Barthes-Labrousse, D. Berardan, N. Dragoe, Physica Status Solidi A, 2015, 212, 2776

Structure and transport properties of the BiCuSeO-BiCuSO solid solution. D. Berardan, J. Li, E. Amzallag, S. Mitra, J. Sui, W. Cai, N. Dragoe, Materials, 2015, 8, 01043

BaCu2Se2 based compounds as promising thermoelectric materials. J. Li, L. Zhao, J. Sui, D. Berardan, W. Cai, N. Dragoe, Dalton Transactions, 2015, 44, 2285

Transport properties of the SnBi2Te4-PbBi2Te4 solid solution. L. Pan, J. Li, D. Berardan, N. Dragoe, Journal of Solid State Chemistry, 2015, 225, 168

Studies on the thermal stability of BiCuSeO. C. Barreteau, D. Berardan, N. Dragoe, Journal of Solid State Chemistry, 2015, 222, 53

The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C80 single ion magnet endohedral fullerene. F. Cimpoesu, N. Dragoe, H. Ramanantoanina, W. Urland, C. Daul, Phys. Chem. Chem. Phys., 2014, 16, 11337-11348

BiCuSeO oxyselenides: new promising thermoelectric materials. L. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan, N. Dragoe, Energy & Environmental Science, 2014, 7, 2900

Roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J. Li, J. Sui, Y.-L. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, L. Zhao, Journal of Materials Chemistry A, 2014, 2, 4903

Layered oxychalcogenide in the Bi-Cu-O-Se system as good thermoelectric materials. C. Barreteau, L. Pan, E. Amzallag, L. Zhao, D. Berardan, N. Dragoe, Semiconductor Science & Technology, 2014, 29, 064001

The phase stability and thermophysical properties of InFeO3(ZnO)m (m=2, 3, 4, 5). C.-L. Zhang, Y.-L. Pei, L. Zhao, D. Berardan, N. Dragoe, S.-K. Gong, H.-B. Guo, Journal of the European Ceramic Society, 2014, 34, 63